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It is shown that improper use of local quantifies for nonlocal situations in fields 
leads to traditional errors. Nonlocal theoretical quantities referred to standards 
in a fixed field are defined in order to obtain reliable results. Nonlocul 
properties of gravitational fields and matter located in it are deduced with the 
help of physical principles and an electromagnetic model for matter. In spite of 
the fact that the local velocity of light should be constant, the field is a space of 
variable nonlocal velocity of light, which accounts for its properties. Matter and 
light virtually propagate themselves without exchanging energy with the exter- 
nal field, in disagreement with traditional assumptions. Matter becomes con- 
traeted by the field. The results are self-consistent and consistent with the 
observed facts. Bodies with r<  2GM would be different from black holes and 
they may account for the peak of highest energy of cosmic radiation and other 
astronomical facts. 

1. I N T R O D U C T I O N  

The  or iginal  p u r p o s e  of this  work  was to look  for  a direct  w a y  of  
u n d e r s t a n d i n g  the t rue phys i ca l  na tu re  of  the g rav i t a t iona l  f ield wi th  the  
use of the  mos t  re l iab le  phys ica l  pr inc ip les  a n d  di rec t  reasoning.  But  soon  
it was rea l ized tha t  there  were two m a j o r  p rob l ems :  M o s t  of  the  t r ad i t i ona l  
local  phys ica l  quant i t ies  are  n o t  well  def ined  for  non loca l  s i tuat ions  in  
s t rong fields;  a n d  the i m p r o p e r  use of  these quant i t ies  has l ead  to  funda-  
men ta l  errors  of  concep ts  tha t  are  deep ly  e m b e d d e d  in the  t r ad i t i ona l  
physics .  

O n  the o ther  hand ,  the  re la t ive ly  weak  tests done  for  the  g rav i t a t iona l  
theor ies  are  no t  a n  abso lu te  gua ran tee  of the  va l id i ty  of  all  of  thei r  
hypo theses  and  i m p l i c i t  a s sumpt ions .  

F o r  the above  reason,  it  was  thought  tha t  it w o u l d  be  be t t e r  to s tar t  al l  
over  aga in  f rom the  mos t  e l emen ta ry  basis  wi th  new quant i t ies  be t t e r  
de f ined  for  more  genera l  n o n l o c a l  s i tua t ions  in f ields a n d  b y  put t ing,  as  a 
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principle, a reasonable doubt on any arbitrary identity that has not been 
previously demonstrated on the basis of some unquestionable physical 
principle. 

The main purpose of the first sections of this article is to introduce the 
new definitions for the nonlocal (theoretical) quantities and to look for the 
answer to the basical problem, what supplies the energy for the conserva- 
tion work? 

For  this problem there are two main alternatives: The traditional one, 
which assumes that the field transfers energy to the body, and the uncon- 
sidered one, that the body converts part of its own rest mass into relatively 
free energy. None of the two hypotheses has ever been seriously demon- 
strated before. 

The most simple demonstrations have been done in Section 3 in order 
to show which one of the alternatives is consistent with unquestionable 
principles extensively used in physics. It may seem hard to believe that the 
result is in strong disagreement with the mainstream of currently accepted 
concepts in physics, for which reason some of the statements made in this 
ar t ic le-- i f  read independently from the main con tex t - -may  look odd. But 
on the other hand, the new concepts greatly simplify both the understand- 
ing of the true physical nature of the gravitational phenomena and the 
straightforward derivation of the theoretical properties of gravitational 
fields. This is done later on with the help of a previously tested electromag- 
netic model for matter. Final tests of the theoretical values with the 
experimental facts are given in the last section, with the purpose of 
showing that the nonlocal masses defined here are the true source of the 
field, as is expected to be the case. 

Unimportant details for each particular case have been omitted for 
reason of space and simplicity. For similar reasons, the obvious generaliza- 
tions from the simplest cases to the more general ones are not even 
mentioned. 

2. NONLOCAL QUANTITIES 

Revision of Concepts. Since the properties of space in a conservative 
field change from point to point, it should be assumed--unless it is 
otherwise demonst ra ted-- tha t  the properties of matter located in it should 
also change from point to point. The rather evident influence of the 
gravitational field on real clocks and rods has also been pointed out by 
Rastall (1960), Dehnen et al. (1960), and Thirring (1961). For  this reason, 
the effective properties of the standards of observers in fields of different 
magnitude are not supposed to be absolutely identical to each other 
regardless of the identical numbers arbitrarily assigned to them by the 
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corresponding local observers. Then, the traditional physical quantities 
determined in fields of different magnitude are not strictly referred to 
identical standards, for which reason any quantity measured by a local 
observer is of no use for another observer in a different field unless some 
unquestionable relationship between the corresponding standards has been 
previously determined on the basis of basic principles of physics. 

The traditional physical quantities, therefore, are not strictly well 
defined for "nonlocal" observers in fields, specially when there is an 
appreciable difference of field between the object and the observer. Then 
any attempt to establish "direct" physical comparisions or relationship 
between traditional quantities should, most probably, lead to wrong re- 
sults. 

In spite of this, it is usual to establish a direct physical relationship 
with quantities determined in fields of different magnitude. This is the case 
of classical physics in which the effects of the field on matter are neglected. 
But it should be understood that those relationships, unless it is otherwise 
demonstrated, do not correspond to well-defined physical concepts in the 
strict sense of the word. For example, the concept of potential energy of a 
body has classically been defined after assuming that there are not real 
changes of the mass of the test body nor of the standard rods along any 
integration line in the field. This is something that has not been proved. On 
the contrary it is simple to prove that the opposite alternative is the true 
one, as shown below. Indeed, in strong fields, the traditional concept of 
potential energy turns out to be as meaningless as the summation of the 
incomes of employees during a strong inflationary period in which the 
buying power of money changes with time. 

Partly as a result of this classical way of reasoning, it is reasonable to 
expect that some wrong fundamental concepts based on presumed identi- 
ties between quantities determined in fields of different magnitude have 
escaped a deep revision. 

This is the case of one of the most common assumptions made in 
traditional physics: that the external field is supposed to exchange energy 
with the body doing conservation work. For example, when Einstein (1965) 
justifies his field equation, he uses the same statement twice: "'...the 
gravitational field transfers energy and momentum to matter in that it 
exerts forces upon it and gives it energy." This hypothesis has never been 
demonstrated. The question is: why has the opposite alternative--that the 
field does not exchange energy with the body--been traditionally disre- 
garded? There are at least two main reasons. 

One of them is the usual tendency to conclude, without a fair 
demonstration, that the forces applied to a body accelerating by the effect 
of such forces are bound to transfer energy to the body. This statement is 
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not always true, as follows from the next example. Assume a car accelerat- 
ing on a horizontal road with the power of its own batteries. The road 
forces acting on the tires do not  give up evergy to the car although they 
give up momentum to the car and the forces seem to travel with the car. 
This statement may be easily demonstrated according to two viewpoints: a 
direct one and an indirect one. 

From the first viewpoint, the road forces are static ones. They have no 
real displacement because new forces are generated at different contact 
points of the road with the tires. This makes a strong difference with the 
case of a nonself-powered car pulled by a string. The application point of 
the external force in this last case is displaced with the car, whose 
relativistic mass should increase with time. 

From the second viewpoint, the kinetic energy is not increased at the 
cost of an external source of energy but at the cost of its own internal 
energy. In other words, the increase of the kinetic energy of the car is 
automatically compensated for by the corresponding decrease of the 
energy of the batteries of the same car. Then, the main characteristic of a 
self-powered body is that its relativistic mass remains constant, in contrast 
to a body powered by an external source of energy. 

Similarly to the above example, in the case of a body falling freely 
from rest in a gravitational field, it is possible, by using the second 
viewpoint, to determine which one of the two alternatives is the true one. 
For  this purpose it is enough to find out if the effective mass of the body 
either increases or does not increase during the free fall. But unfortunately, 
only the final local relativistic mass of the body is the unique well-known 
piece of data available at the end of trajectory. The initial local value of 
the mass is referred to a standard different from the one of the final 
observer, who is in a different field. Therefore, the initial local value is of 
no use for the final observer unless the theoretical relation between the 
standards can be determined from reliable physical principles. 

Here is where the second reason for traditional confusion enters in. 
The straightforward use of the initial and final local masses in order to 
determine the mass difference obviously gives a positive relativistic mass 
increase, thus favoring the traditional assumption. But this careless mass- 
energy balance is meaningless from the strict physical viewpoint because 
this is made with quantities referred to different standards. A reliable 
mass-energy balance should be made only when the initial mass is cor- 
rected for the difference of field between the two locations so that the two 
quantities become theoretically referred to a common standard. 

It may be concluded that in order to establish true physical relation- 
ships between quantities determined in fields of different magnitude it is 
most important that all of the quantities are referred to the same stan- 
dards. For  this purpose, a new type of nonlocal, field-corrected, quantity is 
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to be defined for a theoretical observer for which all of the quantities are, 
in one way or another, referred to his local set of standards even when the 
object is actually located in a field whose magnitude is different from the 
one at the observer's location. This type of quantity is unobservable and it 
should be determined theoretically according to reliable principles or laws. 
This differs from traditional physics, in which the influence of the field on 
basic quantities such as the mass, length, and time are often ignored to 
such a degree that the location of the observer is not even mentioned. Not  
a single additional symbol is normally used in order to show a difference 
between quantities in fields of different magnitudes. 

As a result of the influence of the field on matter, it is to be expected 
that matter, instead of the space, may become contracted and curved by 
the effect of the field and its gradient. For this reason, the material 
reference frame of each local observer would be approximately flat only 
within an infinitesimal local volume in which the deformation produced by 
the field gradient on matter may be neglected. The traditional physical 
principles, such as special relativity, may be safely applied within this local 
volume. A flat theoretical reference frame tangent to this local volume may 
be used for the local observer for his nonlocal theoretical deductions 
taking into account that these units of measurement are not bound to be 
identical to the ones of the observers in different fields. In this way every 
theoretical observer should have the same p ic tu re - -bu t  a different scale 
for the same reality. 

Definitions. The nonlocal quantifies are defined here as the true 
quantity that should theoretically exist at a nonlocal object position in the 
field according to reliable principles or laws, but  compared theoretically 
with the standards at the position of the theoretical observer who is in a 
well-defined and fixed field, or at infinity, at rest relative to the center of 
mass of the system. 

This type of quantity is unobservable, but it is possible to find general 
theoretical relationships between local and nonlocal quantities according 
to reliable physical principles. These relationships are functions that con- 
vert local quantifies determined by one observer to the system of units of 
the other nonlocal observer. 

Because of the influence of the field on the properties of matter, the 
new nonlocal quantities should depend not only on the field at the object 
but  also on the field at the observer's standards. This introduces new 
variables into the traditional physical quantities that normally depend only 
on the relative velocity. Then, the nonlocal quantifies may be regarded as 
an extension of the relativistic quantities to the more general nonlocal case 
in fields. For  this reason the term "relative" has also been used here for the 
nonlocal quantities, when more emphasis is to be placed on this character. 
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The terms "apparent"  and "true" were also used before by  the author 
(1977, 1978). 

The term "local" is used here when there is no appreciable difference 
of field between the object and the observer, but in obvious cases these 
terms have been omitted. 

In order to avoid distractive variables on the problem, the simplest 
type of f i e ld - -a  central static f ie ld- -has  been used here most of the time. 
The central field is assumed to be a point function so that the radial 
positions r and r '  of the object and the observer, respectively, fix well- 
defined fields at these positions. For  simplicity most of the times it is 
assumed that the test masses are infinitely small as compared with the 
central mass. 

The notation used in this type of field and, for example, for the 
nonlocal mass of a test body traveling with a velocity fl relative to that of 
the light is m~,(fl, r). The  value of r '  is the constant value that  fixes the 
true constant values of the reference standards. The velocity/3 of a body is 
dimentionless and, therefore, independent of the location of the observer: 

fl--- Vr,(r) /cr , (r  ) --- Vr(r) /cr(r  ) = V / c  (2.1) 

When r', r, or fl are unimportant they are omitted. When only r '  is 
omitted, it is to be assumed that the observer is at oo, which makes the 
relations look simpler. When both r and r '  are omitted, it may be 
understood, except in special cases, that they are local values. In order to 
avoid unnecessary subindices, the ones for the variables in the parentheses 
are omitted, but it is to be understood that they are expressed in terms of 
the units of the observer at r'. But in special cases, some physical 
quantities are shown to be independent of the location of the observer. In 
these cases, values without subindices are used in the explicit functions 
even when the observer is not at oo. 

For photons, the place of fl in this notation is sometimes used for the 
velocity fl of its source. 

Local Standards. Extremely simplified and idealized definitions are 
used here in order to both save space and avoid distractive variables. For  
example, it is assumed that when an atom is forced to stop in the field the 
kinetic energy is transformed into electromagnetic radiation that is radi- 
ated away, leaving the atom at rest in a free and unexcited state, i.e., at 
temperature of 0 ~ K. No chemical bonds nor thermal energy would be 
ideally present. For  this reason, the present definitions are just theoretical 
ones and they cannot be reproduced in practice. Many other variables 
should be clearly defined. 
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Inertial masses or mass-energies are used here. They obviously include 
any kind of energy--such as kinetic energy-- that  is bound to accelerate 
with the body. The local energy of photons and the local mass of bodies 
are ideally compared by inertial methods with the local standard of mass. 

The local rest mass of some standard test atom in a free and unexcited 
state has been selected as a local unit of both mass and energy. For 
observers at r', r, or at oo, 

m~ r ' )=m~ r ) =  m~ oo)=m ~ = E  ~ = 1 (2.2) 

Since the structure of matter is fixed by well-defined numbers of 
wavelengths, the most elementary standard of length may be chosen in 
terms of wavelengths. According to the quantum theory of the structure of 
matter, the ratio between atomic diameters and the wavelengths of any of 
its spectrum lines is expected to be a constant number. 

The local wavelength of some well-defined spectrum line emitted by 
the local standard atom at rest has been selected as the standard unit of 
local length. Its local period has also been selected as the standard unit of 
local time: 

A~ r;) = ~~ r)  = ~~ o0)=A ~ --- 1 

T~9(0, r ')  --- Tr~ r)  = T~ oo) -- T O = 1 

(2.3) 

(2.4) 

The local frequency thus becomes unity and the local velocity of light 
becomes constant because of the implicit normalization made by local 
observers when they assign arbitrary constant numbers to their standards: 

f~~ r') =f~~ r)  = f~  oo) = f o  = 1 (2.5) 

cr , (r '  ) = A~ r ' ) /Tr~  r ' ) =  cr(r)--c--  1 (2.6) 

This fact does not preclude the possibility that the nonlocal velocity of 
light may be different from unity, since the observer in a different field 
would have different standards. 

Some physical relationships may become clearer when the mass-energy 
of the standard atom is expressed as a multiple of the energy of the 
standard photon: 

m ~ = E ~ = N h f  ~ ~ N h  = 1 (2.7) 

The Planck constant, for example, results just equal to the fraction 
1 / N  of the standard atomic mass corresponding to the standard photon. 
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Because of the well-defined and quantized nature of matter and the 
proportional interaction of the gravitational field with every part of the 
atomic structure, it may be safely assumed that N does not change after a 
change of field. This is even more obvious when the standard body is an 
electron pair or a positronium atom. In this case, the standard photon is 
the gamma radiation resulting from its normal annihilation. N =  2, in this 
case, is a whole number. This shows that h is the same for any observer. 

3. CONSERVATION PRINCIPLES FOR NONLOCAL 
QUANTITIES 

In order to find out the theoretical relationship between local and 
nonlocal quantities it is most important to have reliable principles. The 
author (1977, 1978) thought that the most elementary principle is the 
"mass-energy conservation," which has proved to hold nonlocally, i.e., 
even when the objects are in strong fields such as the ones existing in the 
nuclei of atoms while the observer is completely out of those fields. Later 
on, the author (1979) realized that this principle is the result of even more 
basic principles for photons. 

Nonlocal Conservation Principles for Photons. Static conservative fields 
cannot change the net number of cyclic events observed by means of 
monochromatic radiation traveling through them along a well-defined 
trajectory. This rather trivial fact seems to be the most elementary con- 
servation principle from which the basical relationships between local and 
nonlocal quantities may be established. This kind of principle is normally 
used in physics. Schild (1960), for example, uses it in order to show the 
curvature of the current space-time. 

It is simple to show that if the net number of signals sent by means of 
electromagnetic radiation is conserved during its free trip in a static field, 
its nonlocal frequency should also be conserved. Assume for example that 
the static observer at r '  sends a continuous wave train of n electromagnetic 
waves towards the observer at r. The first and the final wave of the train 
should travel through the same infinitesimal nonlocal displacement ds,,(r) 
with the same instantaneous nonlocal velocities Cr.(r ). Then they should 
take the same nonlocal time interval to travel between r '  and r. If t~,(r') 
and tZr.(r ') are the local starting times of the first and last wave, respec- 
tively, the theoretical nonlocal time interval tr.(r ) that it should take the 
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waves to reach the point at r is 

A t r ' ( r ) = [ l ~ ( r ' ) + f r ~ ) ] - - [ t ~ ' ( r ' ) + f r ~ ) l  

At,,(r)  =Atr , ( r '  ) (3.1) 

This nonlocal time interval should not be confused with the local one 
for the observer at r. This last observer should have his local docks 
running at different rates than the ones at r '  because they are in fields of 
different magnitude. 

If both the number of waves and the nonlocal time interval of the 
wave train do not change during the trip, then the nonlocal frequency of 
the waves reaching r should not  change either. From (3.1) 

n n 

fr,(r) = Atr,(r~ ) - Atr,(r,) =f~,(r') (3.2) 

Since the energy of a photon depends only on its frequency, the 
nonlocal energy of a photon traveling freely in a field should also remain 
constant. From (3.2) 

Er,( r ) -- hfr,(r ) = hfr,( r' ) = Er,( r' ) 

Er,( r )  = const (3.3) 

It may be concluded that three quantities, the net number of waves, 
the nonlocal or relative frequency, and the norflocal or relative energy of 
photons traveling freely in conservative fields, should remain constant. In 
other words, no net exchange of signals or of nonlocal energy would exist 
between photons and static conservative fields. This is a rather obvious 
conclusion since once the temporary electromagnetic perturbation pro- 
duced by the photon has gone away, the field should recover its original 
state. 

Nonlocal Conservation Principle for Bodies. According to the equiva- 
lence between mass and energy, the same conclusions as above are 
expected to hold for the relative mass of bodies. This may be shown to be 
true in the following theoretical experiment. 

Assume that the test body is a positronium atom or an electron pair 
that falls freely from r '  in the gravitational field of a central nonlocal mass 
M. Assume that annihilation occurs during the free fall at the level r with 
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the emission of two photons traveling in opposite directions symmetrically 
to the original path. 

If the traditional hypotheses--namely, that the central field gives up 
energy to the body-- is  assumed to be true, the relative mass of the test 
body should increase during the fall by the amount of relative energy 
presumed to be added up by the central field: 

m,,(fl ,  r)=mr,(0,  r')+AM~, =m ~ + AMr, (3.4) 

When the test body annihilates itself, the resulting radiation should 
conserve its relative energy according to (3.3): 

m~,(fl, r ) =  2Er,(r)= 2E~,(r') (3.5) 

From (3.4) and (3.5), the final energy 2E~,(r') reaching to the level r' 
would be larger than the initial mass re~ by the amount AM~, added up 
by the central field. It would be, then, theoretically possible to use only the 
part equivalent to m ~ of the resulting energy to regenerate the test body at 
r', which could repeat the above cycle rather indefinitely with the net result 
of converting the central mass into radiation. This is, obviously, absurd 
unless 

AM~, =0,  rnr,(/3, r ) =  mr,(0, r ' )=  const~, (3.6) 

This result may be expressed in terms of the standards at r, which is 
equivalent to multiplying (3.6) by a suitable conversion constant: 

AM r =0,  mr(fl, r) =mr(0, r') = const~ (3.7) 

It may be concluded that no net exchange of relative energy should 
exist between the central field and test bodies or photons traveling freely 
through it. Bodies would keep their relative masses constant until some 
nonconservative interaction takes place. 

If the .nonlocal mass of each body of an isolated conservative system 
remains constant, the same should hold for the whole system, which is 
equivalent to the mass-energy conservation principle. 

Nonlocal Mass-Energy Relations. The local application of special rela- 
tivity at r to a standard test atom falling from r' to r and the use of (3.7) 
and (2.2) gives 

m ~(0, r') = m ~(fl, r ) 1 
- -  -- = const (3.8) 

mr(O, r) m ~ (1 -/32) '/2 
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Observe that the larger relativistic m a s s  m r ( f l ,  r) when compared with 
the local rest mass m,(0, r )  is a particular case of a larger relative mass that 
comes constant even from the starting point at r ' .  F rom (3.8) the difference 
of relative rest mass between r '  and r is equal to the kinetic energy released 
by the conservative work: 

m , ( O , r ' ) - m r ( O , r ) = A E r = m ~  (3.9) 

Equation (3.9) may also be expressed in terms of the standards at r ' ,  
which is equivalent to multiplying (3.9) by a well-defined conversion 
factor. Calling the change of nonlocal rest mass between r '  and r Am,,(O), 
we have 

mr.(O, r') -mr,(O, r)  =AE, ,  = - Amr,(0 ) (3.10) 

Then, the nonlocal potential energy of a body becomes well defined 
by its own nonlocal mass, according to (3.9) or (3.10). Observe that the 
gravitational work, or the energy released by it, is done at the cost of a 
decrease of the relative rest mass of the same test body. The gravitational 
work, therefore, is not done by the field, as is traditionally assumed, but by  
the body. 

From (3.10) but for a free fall from r to r+dr  we have 

dE r, = -dm, , (O,  r) (3.11) 

The nonlocal rest mass of a body decreases just in the amount  of 
energy released. It is smaller for stronger fields and it should be a 
well-defined point function. 

Equation (3.10) may also be obtained directly from the mass-energy 
conservation principle in the next theoretical experiment carried out in a 
space free from the influence of external fields. 

Assume that a large number N of standard atoms are initially at rest 
and evenly distributed in a massless spherical shell of initial radius r;, each 
of them tied to massless strings whose opposite ends are connected to 
massless mechanisms at rest at r/, which slowly transform the work into 
other forms of energy, which may be either stored at r i o r  escape as 
radiation to infinity. When the atoms displace themselves quasistatically in 
the field of each other up to a radius r f <r  i, the atoms would come to rest 
in a free and unexcited state, as originally, but in a stronger field. 

The application of the mass-energy conservation principle to the 
whole system for an observer at r ' >  r i gives 

Nmr,(O, r i) = Nmr,(O, rY ) + NAEr , (3.12) 
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Here A E  r, is the net relative energy released by each atom. Equation (3.12) 
divided by N gives an expression equivalent to (3.10), but for each atom. In 
spite of the fact that this theoretical experiment is done for a highly 
symmetrical case with any imaginable number N~> 2, it is equivalent to 
highly unsymmetrical cases since for this particular geometry each atom 
displaces itself just as if the rest of the atoms were located at their mass 
center. Obviously, the same result should also be obtained if the atoms fall 
freely from r; to r y giving away the energy released by gravitational work 
in any imaginable way before coming to rest at r y. 

4. DETERMINATION OF NONLOCAL RELATIONSHIPS IN 
GRAVITATIONAL FIELDS 

According to the mass-energy conservation principle, a box with 
perfectly reflecting surfaces cannot change its weight or its trajectory in a 
gravitational field if any fraction of matter contained in it is transformed 
into radiation, provided that no energy escapes from the box. Based in this 
fact and since the mass and the form of the walls are unimportant, the test 
body may be replaced by an idealized light-box model of any appropriate 
form with massless and perfectly reflecting walls containing either the 
simplest forms of neutral matter or, even better, the radiation resulting 
from the annihilation of the particles. For example, a particle-antiparticle 
pair or a positronium atom could theoretically be used. The radiation 
resulting from their annihilation into two gamma photons traveling in 
opposite directions will form, for simplicity, standing waves after the 
reflection in the walls of the model whose distances are also self-determined 
by a well-defined number of wavelengths. This simulates in part the 
well-defined (quantized) structure of matter. It is reasonable to expect that 
the size of matter and the size of its theoretical model should be related by 
a proportional constant. For similar reasons, it is assumed that the local 
rest mass of the model is just equal to the energy of an even number N of 
photons of equal energy hf(O, r )  each, which may be called the confined 
energy of matter. More complex models may, of course, be devised with 
sets of standing waves of different frequencies in order to study, for 
example, the effects of the field on the energy levels of matter. 

In order to make the picture even simpler, only two main orientations 
of the traveling waves are considered here. The two different approaches 
should lead to consistent results. 

Nonlocal Acceleration of Gravity. The light-box model cannot accel- 
erate unless a gradient of the nonlocal velocity of light exists in the space. 
This may be shown by using either vertical waves or horizontal ones (Fig.l). 



Dilemma in Physics of Gravitational Fields 31 

Assume two monochromatic wavefronts of light starting simulta- 
neously from the center of the light box of height dr in opposite vertical 
directions. After reflections at r+dr/2 they will meet at a level below the 
original center only if the average relative velocity of light in the upper 
region is higher than that at the lower region. If dc(r)=c(r+dr/2)-c(r- 
dr~2), the average difference of relative velocities of the two wavefronts is 
dc(r)/2. From Figure 1, the net displacement dy of the center of the box 
after a time dr(r)= dr/c(r) is equal to - l [ d c ( r ) / 2 ] d t ( r )  which should be 

1 equal to ~ g(O, r) dt(r) 2, from which 

g(O,r)=-�89 dc(r) 
dr (4.1) 

The nonlocal acceleration of gravity g(O, r) is, therefore, a conse- 
quence of the gradient of the nonlocal velocity of light of the space and it 
is independent of the nonlocal mass of the body, in agreement with the 
experiments. 

The acceleration of gravity may also be determined from a monochro- 
matic wavefront emitted along a vertical source 00' of length Ar (Figure 2) 
that starts its trip horizontally. The vertical displacement Ay of the 
wavefront after one wavelength of horizontal displacement occurring dur- 
ing the time At(r)=~(0,  r)/c(r) may be determined according to Huygen's 
principle, from which 0 ~ ( 0 ,  r)/r and Ay = (1/2)~(0, r)O. By equating Ay 
with (1/2)g(0, r)At(r) 2, Equation (4.2) results in the limit when Ar---~0: 

g(O, r)= --c(r) 2dln (O' r) 
dr (4.2) 

r~lr 

~Y 

5- t(r) 
dt( r )  

Fig. 1. Nonlocal space-time diagram for standing electromagnetic waves traveling vertically 
in a gravitational field within an infinitesimal fight box of height dr. The larger nonlocal 
velocity of the fight in the upper region as compared with that in the lower regions results in a 
net displacement dy accounting for the acceleration of gravity. 
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d Mr+dr) 

Fig. 2. Deviation of horizontal standing waves produced by a vertical source 00' in a 
gravitational field. The vertical displacement dy and the vertical momentum gain @y would 
account for the acceleration of gravity and weight, respectively. 

From (4.1) and (4.2) the effect of the gradient of the nonlocal velocity 
of light on matter at rest may be deduced: 

, d c ( r )  dX(O,r) 
2 c ( r )  X(0, r)  

(4.3) 

The Nonloeal Weight. The nonlocal conservative force may be theo- 
retically determined from the nonlocal energy released by the conservative 
work done when the theoretical model displaces itself from a rest at r to a 
rest at r+dr.  Using (3.11) for the observer at infinity, we obtain 

d W (  r ) = d E ( r )  = - din(O, r)  = F(O, r)  dr (4.4) 

from which 

F(0, r ) =  - g r a d  m(0, r)  (4.5) 

Observe that the relative rest mass of a body replaces its potential 
energy in the traditional expression F =  - d U / d r .  From (3.9) and (4.5) for 
/3~0 

F(0, r ) =  (1/2)m(0, r ) (d f l )  2 =m(0,  r)g(O, r ) / c ( r )  2 
(1/2) d V ( r )  dr(r)  

(4.6) 

which is consistent with the observed facts. 
The weight of the model may also be obtained directly from the waves 

traveling either vertically or horizontally in the light-box model after use of 
nonlocal momentum relationships. 

The local momentum is well defined in its most elementary form for 
photons whose free trajectory is well determined by its wavelength. Then, 
the modulus of the nonlocal momentum of photons of relative wavelength 
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~(r) becomes well defined by 

p(r) = h//~(r) =hf(r)/c(r) (4.7) 

When the light box falls from a rest at r 0 down to r, the frequency of 
the waves traveling downward would be blue shifted by Af  due to the 
Doppler effect after successive reflections, while the waves traveling up- 
ward should be red shifted by the same value. This rearrangement of the 
internal energy does not change the relative frequency or energy within the 
box: 

f(fl, r)=�89 f(O, ro)+Af]+�89 f(O, ro)-Af]=f(O, ro) (4.8) 

This makes a difference with the case of the light-box model accelerat- 
ing not by a field but by the effect of a force doing effective work on it. In 
this last case the average relative frequency and energy of the standing 
waves are increased. 

It is simple to show that the Doppler-shifted components of the 
free-falling model may be expressed in the following compact and dimen- 
sionless expression valid for any observer: 

fr,(+_fl, r) = fr,(O, ro)+-Afr, = 1 +-fl (4.9) 

fr,(0, r)  f,,(0, r) (1 _fl2),/2 

From (4.8) and (4.9), the average frequency for the observer at infinity 
is 

f(fl,  r)=f(O, ro)= f(O, r) (4.10) 
(1 --f12) 1/2 

Which multiplied by Nh is consistent with (3.8). 
The net nonlocal momentum of the box may be obtained from the 

sum of nonlocal momenta of the confined photons. Using (4.7), (4.9), and 
(4.10), we obtain 

p(fl, r)= NhAf= Nhf(fl, r) fl= m(fl, r.__.~) fl= m(fl, r)V(r) (4.11) 
c(r) c(r) c(r) c(r)  2 

which is consistent with traditional forms. Observe that the nonlocal force 
(4.6) derived from (4.5) is equal to the one derived from (4.11) and 

F(0, r)= lim dp(fl, r) (4.12) 
~-,o at(r) 
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The weight may also be obtained directly from the vertical momen- 
tum gained by the waves traveling horizontally. Assume, for simplicity, 
that the wavelengths are almost infinitely small and that the horizontal 
displacement is just one wavelength (see Figure 2): 

dX(O,r) -Nh  dX(O,r) 
dp= -Px dr = X(O,r) dr (4.13) 

Using dt(r)--)~(O, r)/c(r) and (4.13) we obtain 

F(O, r )=dpy / dt( r )= - nhf(O, r)din ~d( : ,  
r) 

(4.14) 

which is the same result obtained from (4.2) and (4.6). 

Theoretical Nonloeal Properties of Matter at Rest in the Field. The 
relations between the fractional changes of nonlocal rest mass, frequencies, 
wavelengths, and the fractional changes of c(r) may be derived from 

re(O, r)=Nhf(O, r) (4.15) 

c(r)=f(O,r)h(O,r) (4.16) 

And with the use of (4.3) or (4.5) and (4.14), 

din(O, r) = df(O, r) = dJk(O, r) = 1 dc(r) =d~b(r) 
m(O, r) f(O, r) ~(0, r) 2 c(r) 

(4.17) 

The first three members of (4.17) show that any ratio between relative 
masses, structural frequencies, or wavelengths should remain undistorted 
by the change of the field. The fourth member relates the fractional change 
of the physical properties of the space in the field. 

The dimensionless function d~(r) defined in (4.17) is obviously inde- 
pendent of the location of the theoretical observer. Similarly to the 
traditional potential, if(r) may be more completely defined by the integra- 
tion of the fractional changes in the relative mass of the test body when it 
is displaced from a free and unexcited state at rest at infinity up to a free 
and unexcited state at rest at r. A similar but more fundamental definition 
may also be made in terms of c(r): 

d,b(u = "]oo(r am(O,m(O, r)r) = dc(r)c(r) =ln m~ r)=lnc(r)l/2 (4.18) 
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Observe that in this very special case, since dq~(r) is independent of 
the location of the observer, the integration of (4.18) may also be done 
with local infinitesimal quantities. This makes the numerical values of 
(4.18) identical to the traditional field potential. In spite of this, the 
physical meaning of q,(r) is fundamentally different, for which reason it is 
meaningless to multiply q~(r) by the local mass, as is done in traditional 
physics. The traditional potential energy becomes undefined in strong 
fields since the relative rest mass of the test body changes along the 
integration path. The name "field magnitude," instead of "field potential," 
has been preferred here in order to avoid misinterpretations. For a central 
field, the best value of $(r)  found below is equal to - G M / r .  

With the help of (1.1)-(1.5) the integration of the dimensionless 
equations (4.18) between r' and r gives the following theoretical properties 
of matter at rest in the field and of space. 

(a) Nonlocal Gravitational Red Shift and Time Dilation 

f~,(O,r)/f~(O,r)=exp[e?(r)-d?(r')]=[c~,(r)/c] '/2 (4.19) 

m~,(0, r)/m~(O, r ) =  exp [ ~ ( r ) - q , ( r ' ) ]  = [c, ,(r)/c] 1/2 (4.20) 

The relative frequencies, the relative energies, and the relative masses 
of each structural part of matter would be theoretically decreased by the 
same factor. The same fractional changes should occur in the relative 
frequencies of the photons emitted by atomic transitions between any two 
energy levels whose values would be effected by the same factor. 

From (4.19), the theoretical relative time corresponding to a local time 
interval t~(r)=NT ~ for example, would be 

tr , (r)=tr(r)exp[*(r ' ) -dp(r)]=t~(r)[c , , (r) /c]  -1/2 (4.21) 

Everything would thus occur at slower rates in the field as compared 
with the same phenomenon occurring at infinity. But since local clocks 
would also run at slower rates, local observers in the field would not realize 
that this is actually happening. 

(b) Nonlocal Gravitational Contraction 

Ar,(O, r)/A,(O, r ) =  exp [O(r ) -~ ( r ' ) ]  -- [cr,(r)/c] 1/2 (4.22) 
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Every length in the body at rest should, therefore, be contracted by 
the same factor. For a local length L~(0, r ) =  n~, ~ 

Lr,(O,r)/Lr(O,r)=exp[dp(r)-~(r')]=[Cr,(r)/c] '/2 (4.23) 

Local observers in the field should, therefore, have smaller units of 
length than the ones at infinity. 

(c) Nonlocal Refraction and Relative Velocities. From (4.23) and (4.21), 
the nonlocal velocity of a body is contracted by the same factor as the 
non_local velocity of fight: 

V,,(r)/V~(r)=Cr,(r)/c=exp [ 2 , ( r )  - 2 , ( r ' )  ] (4.24) 

The nonlocal refraction index of the field thus becomes 

nr,(r)=c/c,,(r)=exp2[dp(r')--d?(r)] (4.25) 

which accounts for the deviation of light and for the propagation of matter 
in the field, as shown below. 

(d) Nonlocal Space-Time Contraction. The identical fractional changes 
of the relative frequencies and lengths that matter should have at rest in 
the field stand up even in the nonlocal space-time whose line element is 
defined by 

3 

dsr,(O,r)2=[ G,(r)dtr,(r)] 2 -  • dx~,(O,r) 2 (4.26) 
i ~ l  

From (4.23), (4.24), and (4.26) 

ds,,(O, r)lds,(O, r ) =  exp [ @(r)-q~(r ')] =- [c,,(r)lc] '/2 (4.27) 

Then, the nonlocal space-time interval undergoes the same changes of 
scale as each of the four coordinates. 

For the observer at infinity and for a central field, the application of 
the value @(r)-- - GM/r found below to (4.27) and (4.26) gives 

ds,(O, r) 2= [ c(r)  2 dt ( r )2 -dx(r )2 -dy(r )2 -dz ( r )  2] e 2Gm/r (4.28) 

With the use of (4.25) something like Yilmaz's metric results: 

dsr(0, r)2 =c  2 dt( r )2e - 2 ~ / r  _ [ dx( r )2 + dy( r )2 + dz( r )2 ] e2~M/, 

(4.29) 
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The first approximation of (4.29) looks like the Schwarzchild line 
element. But it seems necessary to point out here that the true nonlocal 
space-time should have all of its coordinates of nonlocal character as in 
(4.26) and (4.28). The product edt(r) in (4.29) is a product of a local 
quantity Cr(r ) and a nonlocal quantity dt(r). It is doubtful that this hybrid 
product  may  have some physical meaning since the two quantities are 
referred to different standards whose ratio is not constant but  depends on 
~b(r). 

(e) Nonlocal Charge Depletion. From (4.5), (4.20), and  (4.23) it is 
simple to prove that the nonlocal forces, the same as any ratio 
mr,(r)/Lr,(r), are independent of the gravitational field at both the ob- 
server and the object. 

On the other hand, a force is to be used in order to define the local 
unit of charge. Assume, for example, that the centripetal force of an 
electron charge rotating around a proton is used for a natural definition of 
the charge unit. The same theoretical force is to be derived for an observer 
in a general nonlocal posit ion:  

rnr,(fl, r) t2  
Fr'(fl' r )= ~r" 

e ;(fl, r) m ,(fl, r) 
Mr,(O , r) m,,(fl, r) R r, R r, 

in which Mr, 0,  r) and mr,(fl , r) are the masses of the proton and of the 
electron, respectively, and K =  1 or a well-defined constant like the classical 

~o/4~" 
Since the ratios m / R  and M / R  are independent of the gravitational 

field, the same should be true of the ratios e/M. Therefore, the nonlocal 
charges should change in identical proport ion as nonlocal masses, after a 
change of gravitational field. 1 

1Most of the theoretical relationships between local and nonlocal parameters for electromag- 
netism in gravitational fields may be derived most simply, for example, by using the 
particular case of the nonlocal electromagnetic force between charges moving parallel: 

F(fl, r)=k q(fl" r)q'(fl', r') [1 -fl(r)fl'(r')] 
d 2 

taking into account that both noalocal electric and nonlocal magnetic forces are independent 
of gravitational fields. 
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(f) Deformation of Matter. The curvature radius of a pseudohorizontal 
rule determined from Figure 2 and (4.22) is equal to [dep(r)/dr] - ! =  
IF(0, r)/m(O, r)] -I. 

(g) Nonlocal Forces. The relation between local and nonlocal 
momentum may be derived either from (4.7) and (4.22) or (4.11), (4.20), 
and (4.24): 

p~,(r) =p,(r)  exp [ @(r') - ~ ( r ) ]  (4.30) 

The relation between local and nonlocal forces may be derived either 
from (4.5) and (4.20) or from (4.12), (4.20), and (4.21): 

0 , ( r )  , .  
Fr(0, r ) = 4 ( 0 ,  r) = mr, tu, r) (4.31) 

The forces are independent of the location of the observer because the 
rest masses, the energies, and the lengths change in the same proportion. 
Observe that for reason of symmetry in (4.31) the term aq~(r)/Or,, should 
be proportional to the nonlocal mass 3/,,(0, r0) causing the gravitational 
field. 

(h) Nonlocal Mechanical Energy Conservation. From (3.8) and (4.20) 
the nonlocal mass-energy conservation is expressed by 

mr,(fl, r)= 
m 0 

(1 --f12) 1/2 
exp [ q~(r)- e~(r') ] = const (4.32) 

since the nonlocal potential energy and the nonlocal kinetic energy are 
equal to 

PEr,(r ) = rn,,(0, r) = m~ [ ~ ( r ) -  th(r') ] (4.32a) 

KE,,(r)=m,,(~,  r)-m, ,(O,  r) 

KEr, (r)=m~ (4.32b) 

The summation of (4.32a) and (4.32b) gives 

m,,( fl, r) = KE,,( r ) + PEr,( r ) = const (4.32c) 

The approximations of (4.32), (4.32a), (4.32b), and (4.32c) are con- 
sistent with the corresponding traditional expressions for weak fields. 
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From (4.32), we have 

f12 = 1 - K r ,  eX p [ 2 ~ ( r ) - 2 ~ ( r ' ) ]  (4.32d) 

where K r, =m~ r) is a constant for each trajectory close to 1 for 
nonrelativistic bodies and equal to zero for photons. 

(i) Nonlocal Angular Momentum Conservation. This may be derived 
directly from the theoretical trajectory of the light-box model. For this 
purpose assume, for simplicity, that the components of the standing waves 
are traveling back and forth along the line of movement. The interference 
of the Doppler-shifted standing waves, from (4.8) and (4.9) gives an 
amplitude proportional to 

2~r [x -c ' ( r ) t ( r ) ]  (4.33) A = s i n  2rr [ x - V ( r ) t ( r ) ] c o s - -  
X(/3, r)  2C(/3, r )  

X( fl, r )=c( r ) / ]  ( /3, r) (4.34) 

c(r) c(r) Nh X(fl, r) 
X'(fl, r)= A----f =/3](/3, r) P(fl, r) fl (4.35) 

c'(r) =c(r) / f l  (4.36) 

Use of (4.11) and (4.34) has been made in (4.35). 
A is a product of two traveling wave functions. The amplitude of the 

first one is modulated by a kind of guide wave of effective wavelength 
X'(/3, r) that determines the orientation of the wavefront of the packet of 
waves according to the interference laws or Huygens' principle. From 
Figure 3 and (4.35) these waves will be in phase when 

d(sin0) = d•'(/3, r) dr = @(/3, r) dr 
(4.37) 

sin0 Jk'(/3, r) r p(/3, r) r 

The integration of (4.37) gives the nonlocal angular momentum con- 
servation law of the same form as the traditional one but with nonlocal 
parameters: 

rsinO 
r-------~ -- const (4.38) 

2,'(/3, 

r •  (/3, r )  = const = L (4.39) 
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/ 

r r , d r  [ 

Fig. 3. Propagation of the monochromatic wavefront AB through successive layers of the 
central field produced by M according to electromagnetic principles. 

The good agreement with the traditional expressions confirms, once 
more, the reliability of the light-box model f6r matter. More explicitly and 
from (4.39) and (4.11) for an observer at r '  we have 

mF(#, r)r  F X# 
L = (4.40) r 

From (4.20), (4.23), and (4.24) it may be deduced that the numerical 
value of L is independent of the location of the observer. 

Since m(fl, r) is a constant in a free trajectory in the field, it seems 
useful to define a constant density of angular momentum for a specific 
trajectory and for a well-defined observer: 

L _ r X #  
J= = m(fl, r) c(r) =cons t  • (4.41) 

which is valid for bodies and for photons. In the last case, re(l, r)=hf(r), 
the energy of the photon. The orbit of the photon in the field is determined 
by (4.41). 

5. EXPERIMENTAL TESTS FOR CENTRAL FIELDS 

According to the definitions, the nonlocal masses are the true or 
effective masses corrected for the difference of field between the object 
and the observer. Therefore, they should be the true source of the field. 
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This is also evident from (4.6) for reasons of symmetry. It should be 
expected, therefore, that the introduction of nonlocal quantities in the 
classical Poisson equation should greatly improve its results in the case of 
strong static fields, at least: 

V],th(r) -- 4qrp,,(0, r) (5.1) 

The integration of (5.1) for a central body of relative mass Mr,(O, ro) 
gives 

4 ( r )  = - G~, M r , ( 0 ,  r0) _- _ a M  (5 .2 )  

r r , r 

The third member of (5.2) results from the fact that the ratio 
Mr,(O, ro)/r ~, and the value of q~(r) are independent of the location of the 
observer, for which reason the values for the observer at infinity may also 
be used for it. In this case, M = M ( 0 ,  r0). For the same reason it may be 
deduced that G~, = G, a universal constant, equal to the classical ratio 
G/c 2. 

Since the relationships of the last sections have been deduced accord- 
ing to well-proved principles and laws of physics, it seems unnecessary to 
show further consistency with ordinary physics; several self-consistency 
tests have already been done during the deductions. 

Beside others, the following tests may be worth mentioning in more 
detail in order to show that the nonlocal field equation (5.1), which is the 
simplest one that may be imagined, is the one that gives the best fit with 
the observed facts. 

(a) Agreement with the Standard Newtonian Theory. From (4.5), (4.20), 
and (5.2), for the observer at infinity 

F(O, r)= GMm(O, r) = OGMm e_oM/, (5.3) 
r 2 r 2 

which resembles Newton's law, but with nonlocal quantities instead of 
local ones. In contrast to Newton's law, F(0, r) is maximum at r =  GM/2, 
and decreases to zero for r = 0. No singularity is obtained for r =  0 nor for 
r= 2GM, in contrast to general relativistic results. 

From (4.1), (4.25), and (5.2), we obtain 

g(0, r)  -- - c(r)2GM/r z (5.4) 

consistent with classical laws in weak fields. 



42 vera 

The use of (5.1) for the case of one body in the field of several discrete 
bodies would give a net contribution of the latter to the field magnitude at 
the location of the former equal to 

' t " ( " )  = E c-M-j (5 .5 )  
j ~ i  rtJ 

M j is the noulocal mass of the bodyj  and r ij is the distance between 
the body i and the body j. Each body would thus contribute to the 
fractional depletion of the nonlocal mass of the rest of the bodies of the 
system. The use of (4.5), (4.20), and (5.5) leads to gravitational forces in 
agreement with traditional physics. 

(b) Gravitational Red Shift and Time Dilation. The approximations of 
(4.19) after use of (5.2) agree with experiments made by Pound and Snider 
(1965). 

The lower nonlocal velocity of light in a gravitational field should 
affect in the same proportion every standing wave representing the energy 
levels in a more elaborate model of atoms. The emission spectrum resulting 
from the difference between energy levels should, therefore, be red-shifted 
in the same proportion as each individual frequency or the total mass of 
the atom, according to (4.19) or (4.20). It is simple to prove--after use of 
classical electromagnetism and (4.23) and (4.25)--that even the nonlocal 
frequency of an LC resonant drcuit should also change according to 
(4.19). It seems trivial to show that some similar relationship holds for any 
kind of frequency or energy, such as the nuclear one, whose values depend 
linearly on the mass. 

(c) Gravitational Refraction. Light emitted by atoms of a vertical 
source in the field is not strictly monochromatic because of the gravita- 
tional red shift. The lower part of the wavefront traveling horizontally has 
lower nonlocal frequencies, according to (4.19), and travels with lower 
nonlocal frequencies, according to (4.25). The net result is a smaller 
nonlocal wavelength, according to (4.22), of the lower part of the wave- 
front. The wavefront would deviate, according to Huygens' principle, 
proportionally to dX(0, r ) / d r ~  GM/r  2, thus accounting for the weight and 
acceleration of gravity determined from (4.3), (4.22), (4.14), and (5.2). 

A strictly monochromatic wavefront, on the other hand, would have a 
wavelength determined from (4.24), (5.2), and (4.19): 

h(r)  = c ( r ) / f ( r )  = •~ ( -  2GM/r)  (5.6) 

Its deviation is roughly proportional to d~k(r)/dr~2GM/r 2, i.e., the 
double of the deviation of the internal waves of matter at rest. The 
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integrated deviation of light f rom stars produced by the gravitational field 
of the sun is thus approximately equal to 4 G M / r  i, where r i is the impact 
parameter. This is in agreement with the experiments of Bertotti et al. 
(1962). 

From (4.41) and (5.2) the trajectory of photons in central fields is well 
determined. The inclination angle, 0, is determined by 

sin0=(x,/x)exp(-2/x) (5.7) 

where x = r / G M ,  x i = r i / G M ,  and r i is the impact parameter. 
Figure 4 gives x vs 0 for some special cases. In curve A B C  for x i = 3 e ,  

light is only deviated. Curve D E  is for the critical case when light may 
either be deviated according to curve EF, may stay orbiting at E,  or may 
be captured according to curve E0.  Curve I J K  represents a photon 
escaping from the surface ( L L ' )  at an angle of about 45 ~ but  later 
captured at the same surface. 

The limiting escape angle, 0 e, of photons is determined by 

sin0 e = ( 2 e G M / r )  exp ( - 2 G M / r ) ,  r <<, 2 G M  (5.8) 

Superdense bodies with r < 2 G M  would capture anything traveling 
with x i < 2 e ,  regardless of its energy, but  they would let escape only 

"2180" 135 = 9 4 

Fig. 4. Inclination angles 0 of monochromatic light beams for several impact parameters r i 
and critical escape angles for a semiblack body with r<2GM. The values of x are equal to 
the ratio r/GM, and xi=ri/Gg. 
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photons or relativistic particles emitted with an angle lower than 0 e. 
Therefore, they let photon s escape with lower probabilities than a black 
body, for which reason they have been called semiblack bodies. They 
could capture more energy than they may emit due to both the lower 
escape probability and the strong gravitational red shift, which may go 
beyond the limits generally assumed from the theory of general relativity. 
In spite of high local temperatures at their surfaces, they should look, as 
observed from infinity, as if they had temperatures close to 0 ~ K with the 
characteristics of cavity radiation. Some evidence of the existence of these 
bodies is given below. 

(d) Time Delay of Radar Echo from Planets and Mariners. From (4.24) 
and (5.2), the theoretical time of radar echo from a planet is determined by 

c t = 2 ( x  e + x v ) + 4 O M l n ( r p  + x v ) / ( r  e - X e )  (5.9) 

x e and xp are the distances along the line of flight from the earth and 
the planet, respectively, to the point of closest approach to the sun. r e and 
rp are the distances from the sun to the earth and from the sun to the 
planet, respectively. Equation (5.9) is in agreement with the experiments 
published by Shapiro et al. (1971) and Anderson et al. (1971). 

(e) The Perihelium Shift of Planets. The application of (4.32d) and 
(4.41) to free orbits gives 

( dz ] 2 = A 2 [ l _ K 2 e x p 2 q ~ ( r ) ] e x p [ _ 4 e o ( r ) ]  da ] +z2 (5.10) 

where a is the angular position, z -- GM/r ,  A = GM/jc ,  and j  is the density 
of angular momentum. 

For ~( r )=  - z ,  the second-order approximation of (5.10) gives a peri- 
helium shift of 

Aa = 6,rA 2 = 6GM / a(1 - e 2) (5.11) 

in agreement with the results of the observations given by Shapiro et al. 
(1971). 

It is interesting to know how much experimental errors of the peri- 
helium shift would allow that the ratio F(0, r)/m(O, r) may deviate from 
the theoretical value (5.3): 

F(O, r) = Oq,(r) = G M  (5.12) 
m(O, r)  Or r 2 
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For this purpose it may be assumed that the ratio F(0, r)/m(O, r) has the 
form suggested from the results of general relativity, 

F(O, r) GM GM "1 +xGM/r )  (5.13) 
re(O, r) = r ( r - x G M )  ~ -  ---~-( 

x = 2  for general relativity. Here x is the maximum factor that may 
produce results in agreement, within experimental errors, with the observed 
facts. If q~a(r) is the new field magnitude defined by (5.13), its value may 
be obtained by equating (5.13) with dq~a/dr and integrating. Its approxi- 
mate value is (GM/r)(1 +xGM/2r) .  The substitution of this value into 
(5.10) gives a shift of 

Aa----~-(6 +x)A 2 (5.14) 

The experiments deviate from (5.11) by about _+ 1%, for which reason 
x must be smaller than 0.06, i.e., much smaller than the value of 2 
suggested from general relativity. 

(f) Relativistic Cosmic Radiation. The nonexchange principle for non- 
local mass-energies turned out to be just a consequence of well-proved 
principles such as the mass-energy conservation, which does hold for any 
type of conservative field. It may be expected, therefore, that this principle 
would hold for other conservative fields or for a combination of them. 

The rough application of the principle of nonexchange to the case of a 
He nuclei falling freely into a superdense star permits a fairly good 
estimation of the maximum energy of the particles that would result from 
the capture of neutrons and from the pseudoreflection of the protons by 
the core. 

Even when the intermediate processes are unimportant for the present 
purposes, it may be expected that, for example, a combination of attractive 
and repulsive fields should produce different effects on both types of 
particles. Under dynamical conditions, for example, it is reasonable to 
expect that the core becomes positively charged so that protons are likely 
to be reflected with more probability than neutrons under the combined 
effect of nuclear, electrostatic, and gravitational fields. While the two 
particles are bound together, the nonlocal mass of the repelled particles 
(protons) would grow at the cost of the decrease of the nonlocal mass of 
the attracted particles (neutrons), thus keeping constant the total mass 
of the He nuclei, according to the nonexchange principle, up to the point 
of rupture of the nuclear binding. 

Neglecting some probable nonconservative loss of energy on the 
whole process, the sum of the final nonlocal masses of the particles should 
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be equal to the initial noulocal mass of the He nuclei. From (4.20) and 
(5.2), the final relative rest mass of the neutrons at rest at the core of high 
GM/r should be negligible as compared to the final relative masses of the 
protons escaping towards infinity. This simple mass-energy balance of 
nonlocal masses leads to a final relative mass of the two protons just equal 
to the initial relative mass of the He atom. The magnetic rigidity equivalent 
to this excess of mass is equal to 1.6• 109 V, which is in excellent 
agreement with the last peak of the primary cosmic ray spectrum observed 
by McDonald and Webber (1959) in periods of minimum perturbations 
due to solar flares. 

6. CONCLUSIONS 

The introduction of nonlocal theoretical quantities referred to stan- 
dards in a fixed field at the position of the observer provides a firm basis 
on which true physical relations may be established between quantities in 
fields of different magnitude. The gravitational phenomena may be under- 
stood in terms of quantities previously corrected for the unavoidable 
effects of the field on matter. 

The basic theoretical relationships between local and nonlocal quanti- 
ties have been deduced with the help of either the mass-energy conserva- 
tion principle or the equivalent fact that static conservative fields do not 
change the net number of electromagnetic waves traveling through them. 
From them it was deduced that the nonlocal frequency and energy of 
radiation and the nonlocal mass of bodies should remain constant during 
their free propagation in gravitational fields. This is equivalent to a 
nonexchange principle according to which there is no net exchange of 
mass-energy between the static conservative field and matter or radiation 
traveling freely through it. 

This result is in clear disagreement with the traditional assumptions 
that the conserving fields should transfer energy to the bodies doing 
conserving work. On the contrary, the energy released comes from the 
conversion of the equivalent fraction of the rest mass of the same test body 
into rather free forms of energy. The gravitational work is more properly 
done by the body, not by the field as is commonly stated. 

As a result of this, the nonlocal rest mass of the body becomes a 
measure of its absolute potential energy. 

The explanation for the above result and for the gravitational phe- 
nomenon becomes clearer after use of the light-box model for matter. The 
gravitational field turns out to be a space of variable noulocal velocity of 
light, which accounts for all of its properties. The local velocity of light, 
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nevertheless, is a constant for any observer because of the constant values 
assigned to their local standards. 

Similarly to the case of light, the standing wave packets of the model 
for matter propagate themselves in the field without changing their average 
non.local frequencies or energies. They deviate toward regions of lower 
nonlocal velocities. Their theoretical trajectories are consistent with the 
most rigorous experiments. 

When a free-falling body is forced to stop in the field, each elemen- 
tary part of it releases a well-defined fractional part of its own energy 
which, in one way or another, may go away from the body. As a result of 
both the lower nordocal residual mass-energy of the body and the lower 
nonlocal velocity of light of the space, the new body, neglecting the small 
deformation produced by the field gradient, would be of identical propor- 
tions to the original one, but every part of it would have smaller nonlocal 
rest mass, lengths, wavelengths, and electric charges. The nonlocal energy 
levels and the emitted wavelengths would also change in the same propor- 
tion as the wavelengths defining the structure of matter. The percentage of 
gravitational red shift observed is just a direct measure of the percentage of 
the mass difference between the atoms of the object and the observer's 
atoms. 

The good agreement of the tests done in the last section prove that the 
nonlocal field equation (5.1) is the one most consistent with both the 
observed facts and the physical principles involved in the deductions. They 
also prove that the nonlocal mass of a body is the true source of its 
gravitational field. The field itself is not a secondary source of gravitational 
field. 

If both the test body and the source are replaced by light-box models, 
it is simple to conclude that the most elementary gravitation phenomenon 
is just a photon-photon interaction in which each one modifies the 
electromagnetic properties of the space around it. 

The theoretical semiblack body resulting here for r < 2GM would have 
different properties from both plain black bodies and black holes. Radia- 
tion may escape from semiblack bodies but with lower probabilities than 
in a black body. They, therefore, may emit both strongly red-shifted cavity 
radiation of nonlocal temperature close to 0 ~ K and relativistic cosmic 
radiation close to the theoretical maximum at magnetic rigidity of 1.6 GV. 
Both types of radiation have been detected. In the primary cosmic ray 
spectrum observed by McDonald and Webber (1959) there is a sharp 
decrease of cosmic radiation just after the last peak at 1.6 GV, just as is 
expected. This seems to prove both that the nonexchange principle derived 
here holds for the other types of conservative fields involved in the 
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generation of cosmic radiation and that a relatively large fraction of matter 
in the universe exists in the form of semiblack bodies. This is also 
consistent with the very much larger mass of the dusters of galaxies when 
this mass is determined by dynamical methods as compared with the sum 
of the masses of their luminous galaxies. On the other hand, it seems 
reasonable to expect that black galaxies would be the natural result of 
galactic evolution and that their most massive bodies would have reached 
the state of semiblack bodies. This is also consistent with the well-known 
fact that the density of galaxies observed beyond clusters of galaxies is 
smaller than the average found in other regions of the sky. Black galaxies 
would not let see what is behind them. 

The absence of a singularity at r=2GM would open the way for 
nontraditional alternatives for stellar evolution and for new explanations 
of many astronomical phenomena (Vera, 1974, 1977). For example, the 
quasar red shifts can be interpreted as gravitational red shifts rather than 
cosmological ones. This is in agreement with the work of Clapp (1973) 
based on the Yilmaz (1958) exponential metric. 

It seems possible to make a direct comparison of the present results 
with the ones of general relativity after use of the work of Thirring (1961). 

In his original pseudo-Euclidean metric, the unrenormalized quantities 
are unobservable, the same as the nonlocal quantities used here. On the 
other hand, the renormalized metric is directly defined by observable 
(local) quantities that are in agreement with the Riemannian metric of 
general relativity. 

The unrenormalized lengths, time, electric charges, and the velocity of 
light are equal to the respective approximations of the nonlocal values 
obtained here. The renormalized mass increases with the increase of the 
field. The nonlocal mass decreases in stronger fields. 

The present results are more consistent with the results of Yilmaz's 
theories (1958, 1971) than with the ones of Einstein's general relativity. We 
need not be concerned with the objections made by Will and Nordvedt 
(1972) because the nonlocal quantities are not dependent on the velocity of 
the system relative to the space. Any possible anisotropic phenomena 
produced by such a relative displacement should affect in the same 
proportions and in the same relative orientations both the local structure 
of the atoms of the standard and the nonlocal structure of the system. 
Since every nonlocal quantity is a ratio between quantities that are affected 
by the same kind of changes, their ratio should be independent of such a 
change, unless the changes were nonlinear, which is unlikely. Then, it 
would be impossible to detect such a linear phenomenon. For practical 
purposes, therefore, a theoretical observer at rest relative to the mass 
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cen te r  of  the  sys t em m a y  safe ly  a s s u m e  a n  idea l i zed  w o r k i n g  space  a t  res t  
re la t ive  to h im.  
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